Functional Genomics
The goal of functional genomics is to understand the function of larger numbers of genes or proteins, eventually all components of a genome. A more long-term goal is to understand the relationship between an organism's genome and its phenotype. The term functional genomics is often used broadly to refer to the many technical approaches to study an organism's genes and proteins, including the "biochemical, cellular, and/or physiological properties of each and every gene product" while some authors include the study of nongenic elements in his definition. Functional genomics may also include studies of natural genetic variation over time (such as an organism's development) or space (such as its body regions), as well as functional disruptions such as mutations.
The promise of functional genomics is to generate and synthesize genomic and proteomic knowledge into an understanding of the dynamic properties of an organism. This would provide a more complete picture than studies of single genes. Integration of functional genomics data is also the goal of systems biology.
Related Conference of Functional Genomics
Functional Genomics Conference Speakers
Recommended Sessions
- Applications of Genomics & Bioinformatics
- Bioinformatics
- Bioinformatics Work Flow Management Systems
- Computational Biology
- Data Mining in Genomics and Bioinformatics
- Drug Design & Development
- Epigenomics
- Evolutionary Biology
- Functional Genomics
- Genomics
- Immunomics
- Metabolomics
- Molecular Modelling
- Next Generation Sequencing
- Oncogenomics
- Pathogenomics
- Pharmacogenomics
- Phylogenetics
- Proteomics
- Structural Bioinformatics
- Structural Genomics
Related Journals
Are you interested in
- 3-D Structure Determination - Structural Biology 2025 (Germany)
- Advancements in structural Biology - Structural Biology 2025 (Germany)
- Biochemistry - Glycobiology 2025 (Germany)
- Biochemistry and Biophysics - Structural Biology 2025 (Germany)
- Computational Approach in Structural Biology - Structural Biology 2025 (Germany)
- Drug Designing and Biomarkers - Structural Biology 2025 (Germany)
- Evolution of Glycan Diversity - Glycobiology 2025 (Germany)
- Frontiers in Structural Biology - Structural Biology 2025 (Germany)
- Gene regulation and Cell Signalling - Structural Biology 2025 (Germany)
- Genomics and Metabolomics - Glycobiology 2025 (Germany)
- Glycans in Diseases and Therapeutics - Glycobiology 2025 (Germany)
- Glycans in Drug Design - Glycobiology 2025 (Germany)
- Glycan’s - Glycobiology 2025 (Germany)
- Glycobiology - Glycobiology 2025 (Germany)
- Glycochemistry - Glycobiology 2025 (Germany)
- Glycoimmunology - Glycobiology 2025 (Germany)
- Glycoinformatics - Glycobiology 2025 (Germany)
- Glycolipids and Glycopeptides - Glycobiology 2025 (Germany)
- Glyconeurobiology - Glycobiology 2025 (Germany)
- Glycopathology - Glycobiology 2025 (Germany)
- Glycosience - Glycobiology 2025 (Germany)
- Hybrid approaches in Structure prediction - Structural Biology 2025 (Germany)
- Molecular Biology - Structural Biology 2025 (Germany)
- Molecular biology techniques - Structural Biology 2025 (Germany)
- Molecular Modelling and Dynamics - Structural Biology 2025 (Germany)
- Proteoglycan and Sialic acid - Glycobiology 2025 (Germany)
- Proteomics and Genomics - Structural Biology 2025 (Germany)
- Recent Advances in Glycobiology - Glycobiology 2025 (Germany)
- Sequencing Analysis - Structural Biology 2025 (Germany)
- Structural Bioinformatics - Structural Biology 2025 (Germany)
- Structural Biology - Structural Biology 2025 (Germany)
- Structural Biology Databases - Structural Biology 2025 (Germany)
- Structural Biology in Cancer Research - Structural Biology 2025 (Germany)
- Structural Enzymology - Structural Biology 2025 (Germany)
- Synthesis and Biological Role of Glycans - Glycobiology 2025 (Germany)